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MATHEMATICAL MODELS OF ETEMENTARY MATHEMATICS
LEARNING AND PERFORMANCE

Patrick Suppes

ABSTRACT

This project was concerned with the development of mathematical
models of elementary mathematics learning and perfOrmance. Probabi-
listic finite automata and register machines with a finite number of
registers were developed as models and extensively tested with data

.

arising from the elementary- mathematics strand curriculum the Institute
for Mathematical Studies in the Social Sciences has developed over a
period of more than five years. This curriculum is delivered to students
in schools at teletype terminals in a computer-assisted-instruction mode
by telephone lines connected to the Institute's computer at Stanford.

Probabilistic automata were defined and tested for basic addition,
subtraction and multiplication exercises. An extensive report of this
work is to be found in the recent book by Patrick Suppes and Mona
Morningstar entitled Computer-assisted Instruction at Stanford, 1966-58:
Data, Models, and Evaluation of the Arithmetic Programs.

Detailed application of the register machine models is completed,
but the results are as yet unpublished and will appear subsequent to
the date of this final report.

The results of these analyses indicate that the kinds of models
developed can be applied to learning and performance in elementary
mathematics, and have implications for detailed pedagogical procedures
of instruction in these basic skills.
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I. INTRODUCTION

The psychological study of arithmetic skills, like most other
parts of psycholozTv, has a relatively recent history--only a few sys-
tematic studies were made before 1890. The real impetus was provided
by E. L. Thorndike's analysis of the learning of arithmetic in his
Educational Psychology (1915, 1914) and later in his The Psychology
of Arithmetic (1922). In an attempt to account for the acquisition
of arithmetic skills in terms of his three psychological laws--the
law of readiness, the law of exercise and the law of effect--he tried
to justify and analyze the reason for the traditional importance attached
to drill and practice in arithmetic; for him the psychological purpose
of drill is to strengthen the bonds between stimuli and appropriate re-
sponses. He moved on from such fundamental questions to the more prac-
tical ones of amount and distribution of practice. He emphasized the
advantages 3f distributed practice and criticized the actual distribution
of practice in textbooks of his time. Some effects of his work on the
revisions of textbooks in the 1920s and later are documented in Cronbach
and Suppes (1969, pp. 103-110).

In the twenties and thirties there were a large number of good
empirical studies of arithmetic skills, many of which were concerned with
detailed questions that had to be answered in any complete psychological
theory of arithmetic. For example, Buckingham (1925) studied student
preferences and aptitudes for adding up or down in column addition
problems. An extensive review of this literature may be found in
Suppes, Jerman and Brian (1968).

Empirical studies like those of Buckingham were not designed to
develop an overall theory of arithmetic skills; nor, it is probably
fair to say, was Thorndike completely sensitive to the gap that existed
between his theoretical ideas and the actual algorithms students were
taught to solve problems. There are many stages to work through 1

developing an adequate theory, and there is no one point at which one
can say the theory is now complete in all respects. If, for example,
the theory is adequate at- some conceptual level of information proces-
sing, then it is possible to move on to additional perceptual questions.
Moreover, once a perceptual theory of a certain level of abstraction is
successfully developed, it is possible to go on to still more detailed
perceptual questions, such as requiring the theory to include eye move-
ments of students as well as their numerical responses. It is an impor-
tant methodological precept that at no foreseeable point shall we reach
a fixed and firM bottom beyond which we cannot probe for further details
and a more refined theory.

As a background for the work done under this project, we briefly
sketch the history of work in the Institute for Mathematical Studies in
the Social Sciences at Stanford over the past six or seven years on the
psychological study of arithmetical skills. Rather than attempt a gen-
eral coverage, we shall concentrate on a single example--the simple one
of column addition--to illustrate how we have tried continually to deepen
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the theory, The methods and results cited for this simple are
extended in the bibliography of technical publi2ations to other
arithmetical skills.

It also should he mentioned that the data used for ting th2
models have all been collected as tart f the Institute's activitfes
in computer-assisted instruction in elementary mathematics. The part
of this work that was supported by the current project was especially
directed to the elementary mathematical skills of disadvantaged stu-
dents. Several of the publications, especially Suppes and Morninstar
(1970), refer to early phases of this work,

The first question we tried to answer was how can one predict the
relative difficulty of different exercises of column addition f, for
example, we consider problems up to the size of three columns and three
rows, we are confronted with approximately one billion problems. A
meaningful theory must drastically reduce this large number of exercises
to a small number of classes in which all members of a class are essen-
tially the same in difficulty.

Our first approach (Suppes, Hyman & Jerman, 1967) was to identify
a small number of structural fe\atures that would permit us to apply
linear regression models to predict either probability of correct re-
sponse or expected latency of response. Additional applications of
such regression models may be found in Suppes, Jerman and Brian (1968)
and Suppes and Morningstar (1972). The application of such regression
models is exemplified in Section III of this report. As can be seen
from the information given there, the fit of the regression model to
mean student-response data on column addition exercises is not bad.
Conceptually; however, there are obvious lacunae. The regression model
that predicts response probabilities does not really postulate a specific
process by which students apply an algorithm to solve an exercise.

The next level of theory developed is aimed. precisely at offering
such process models. The natural theoretical tools for provi.clin process

models of algorithmic tasks are automata, and for most of elementary
arithmetic, simple finite automata are satisfactory. There is, however,
one weakness in finite automata as ordinarily defined, namely, they have
no place for a probabilistic theory of error, so the natural step is to
move from finite deterministic automata to probabilistic automata.

An automaton becomes probabilistic by making the transition func-
tion from state to state probabilistic in character. Thus, from a given
input and a given internal state there is a probability of going to any
one of several different states. In general one wants to make the output
function probabilistic also. This means that given an internal state and
an input there is a probability distribution over the next output. (These
ideas are made formally definite in Definitions 1 and 2 of Section II.)
By drastically reducing the source of error to a small number of param-
eters, we can develop and apply manageable probabilistic automata to
student-response data
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Such a probabilistic automaton model takes a definite step beyond a
regression model in providing in an abstract sense an adequate inormation-
processing model. From a psychological standpoint, on the other hand, the
automaton models are unsatisfactory in that they lac1-1 any perceptual com-
ponents, and therefore they do not deal directly with how the student
actually processes the format of written symbols in front of him.

Our final effort as part of this project was very much directed at
this point. In principle, it would be possible to continue the develop-
ment of automaton models with an abstract concept of state to represent
the student's perceptual processing. A weakness of this extension of
the automaton models is that when the states are left in a general ab-
stract formulation it is natural to end up designing a different automaton
for each of the different tasks in elementary mathematics, and a plethora
of models results. Closer examination of the algorithmic tasks of arith-
metic facing the student in solving exercises indicates that the various
tasks have much in common. This commonality suggests a somewhat differ-
ent approach, an approach via register machines with perceptual instuc-
tions.

Register machines were first introduced by Shepherdson and Sturgis
(1963) to give a natural representation of computable functions in terms
that are closer to the idea of a computer accepting instructions than to
a Turing machine. In the case of the representation of computable func-
tions, a rather simple set of arithmetic instructions is sufficient. In
particular, an unlimited register machine has a denumerable sequence of
registers, but any given program only uses a finite number of these reg-
isters and the machine accepts six basic instructions: add one to a
register, subtract one, clear a register, copy from one register to another,
and two jump instructions, one conditional and one not. (This set of six
instructions is not minimal, but it is convenient.) Obviously, for the
perceptual processing that a student does we want a different register
machine and a radically different set of instructions. In addition, it
is natural to postulate only a finite fixed number of registers that
the student can use.

The basic idea of this approach is to drastically simplify the per-
ceptual situation by conceiving each exercise as being presented on a
grid. The student is represented by a model that has instructions for
attending to a given square on the grid; for example, in the standard
algorithms of addition, subtraction and multiplication we begin in the
upper right-hand corner and then have instructions to move downward
through each column and from right to left across columns. Additional
instructions for storing the results of,an operation, for outputting
the last digit of a stored numeral, etc., are needed. Some further
details. are given in Section II, but the discussion is not as complete
as that for automaton models.

The basic idea of register machines is that the different algorithms
are represented by subroutines. One subroutine may be called in another,
as complex routines are built up. The procedure is familiar to most of
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Fer example, in performing column multipla:atien we use the e.:Le -
rithm of addition, which in thie case means calli.r e. subeeeeine fee
ad:lition: in long division we call the subroutines eubl:actf:e
multiplication, as well as for addetion, Eaeh bas-i. eubreuteee eep-
e-eented by a program an terms of the primiteiee int:r.ectiere._ Tee peeb-
lem from a psy.chologleal standpoint is le fir:d ieetructione ehat pre'7ide
not only a realistic description of what the :student does, a deeelptien
that can be fitted to data in the same way that the automaton =dele have
been applied to data, but also a fuller account of hew the student pro-
. -_ the exercise,

At the first stage of analyzing register machine models we can get
resulte similar to those for the automaton modele by postulating et rer
parameers for execution of main .eubreetines ef t e reutine for a given
algerithm. In addition to prodding an explicit analysis of perceptual
preeeeeing, the register machines provide a natural device ler ana:,yeine
learning. However, the detailed and technical extension of regieeee
machines to learning was not made during the course of the present prej-
ct, but is work planned for the future.

In Section II we describe the theoretical and empirical methods
used in the.project and give a brief, but technical, description of
the moeteIMportant models tested. Finally, in Section Ill we summarize
the results of the test of the models, but because of the great techni-
cel detail of the results this report provides only a summary, and we
refer the reader to publications that have already appeared or are
forthcoming, if he wishee to pursue the details.

a1 e METHODS

Although the bulk of the research conducted under this project
wa eo',cerned with probabilistic automaton and register machine models,
we extended our earlier work on linear regression models and begin thi
dieeueeion of the models with a presentation of the linear reere:-eien
model for column addition reported in Suppes and Morningstar' (19'!2.

Linear regression models. We began with regression models that
use as independent variables structural features of individual arith-
metie exercises. We denote the jth structural feature of exericse
in a given set of exercises by fij. The parameters estimated from the
data are the values attached to each structural feature. (In previous
publications we have referred to these structural features as factors,
but this can lead to confusion with the concept of factor as used in
factor analysis.) We denote the coefficient assigned to the jth

structuralfeatureby.and we emphasize that the structural fea-

t ures themselves, as opposed to their coefficients, are objectively
identifiable by the experimenter in terms of the exercises themselves,
independent of the response data.
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Let pi be the observed proportion of correct responses on exercise

i for a given group of students. The natural linear regression in terms

of the structural features
ij

aj is simply

P. = 7 a.f
i

. + a .

1 j j j 0

Unfortunately, when the regression is put in this form, there is no
guarantee that probability will be preserved as the structural features
are combined to predict the observed proportion of correct responses.
To guarantee conservation of probability, it is natural to make the
following transformation and to define a new variable zi.

1 p.
1

(1) z
i
= log

Pi

and then to use as the regression model

(2) z = a.f. +a
j J 0

The numerator of equation (1) contains 1 - pi rather than pi, so

that the variable z
i

increases monotonically rather than decreases

monotonically with the magnitude of the structural features fib.

In Chapter 3 of Suppes and Morningstar (1972), the following
structural features were defined for column-addition exercises.

ale feature SUMR is the number of columns in the largest addend.
For three-row exercises SUMR is defined as 1.5 times the number of
columns, plus .5 if a column sum is 20 or more. For example,

a
SUMR ( + b ) = 1

c

a

SUMR ( b )
+

de

1.5 if de < 20

if de > 20

SUMR (ab + c = de) = 2 .

This structural feature reflects the number of columns of addition,
with greater weight being given to columns in three-row exercises
than in two row exercises.
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The second structural feature is CAR, which represents the number
of times the sum of a column, including any numbers carried to it,
exceeds nine, For example,

a

CAR ( + b = 0

CAR (a + b = cd) = 1

ab

CAR + cd )
of

ab
( cd. )

+ of
ghi

if b d < 9

if b + d > 9

. if b + d + f < 9, a + c + e > 9

if b + d + f > 9, a + c + e > 9 .

The third structural feature VF reflects the vertical format of
the exercise. The vertical exercises with one-digit responses were
given the value O. Multicolumn exercises with.multidigit exercises
and one-column addition exercises with a response of 11 were given
the value 1. One-column addition exercises with a multidigit response
other than 11 were given the value 3. For example,

ab

VP ( cd ) = 0
e

abc

VF ( t_def ) = 1
ghi

a
VF ( + b ) =

cd
3,

This structural feature is meant to reflect the likelihood of the
mistake of reversing the digits of.the correct response, especially in
a one - column addition exercise. In the computer-assisted instruction
environment where students were responding at; teletype terminals,
responses to vertical exercises were typed from right to left, while
responses to horizontal exercises were typed from left; to.right. Thus,
it was possible for a student to have in mind the correct answer, but
to err by typing the digits in the reverse order. It is fair to say'
that this structural feature is of more importance in working at a
computer-based terminal, than when using paper and pencil.
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Three-state auto!' .e central weakness of the regression

models is that they a )(leis. They do not provide a

schematic analysis o] umic steps the student uses t. an

answer. Automaton models pfocess models and therefore their'

resents a natural extension of the regression analysis. For the eercises
in. column addition we may restrict ourselves to finite automata, but as
ordinarily defined they have no place for errors. However, this is easily

introduced by moving from deterministic state transitions to probabilistic
ones.

We begin with the definition of a finite deterministic automaton,
and then generalize.

Definition 1. A structure = (AV V
0'
MQs0 ) is a finite

(deterministic) automaton with output if and only if

(i.) A is a finite, nonempty set,

(ii) VT and V0 are finite nonempty sets (the input and output

vocabularies, respectively):

(iii) M is a function from the Cartesian product A X VI to A

(M defines the transition table),

(iv) Q is a function from the Cartesian product A X VI to V0

(Q is the output function),

(v) s0 is in A (s
0

is the initial state).

As an example of a finite automaton with output, that is, a finite
automaton in the sense of this definition, we may characterize an autom-
aton that will perform two-row column addition.

A= {0,1}

VI = {(m,n) : 0 m, n < 9}

Vo =

0 if m + n + k < 9
M(k,(m,n)) =

1 if m + n + k > 9 , for k = 0,1

Q(k,(m,n)) = (k + m + n) mod 10 ,

s
0

= 0.

Thus the automaton operates by adding first the ones' column, storing
as internal state 0 if there is no carry, 1 if there is a carry,
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outputting the sum of the ones' column modulus 10, and then moving on
to the :Input of the two tens' column OT,-its, etc. The initial internal
state s

0 is 0, because at the begin. 7 of the exercise there is no
'carry'.

Definition 2. A structure W = (A,\TI,V0,p,q,s0) is a (finite)

probabilistic automaton if and only if

(i) A is a finite, nonempty set,

(ii) V
I

and V
0

are finite, nonempty sets,

(iii) p is a function on A X V X A to the interval [0,1] such

that for each s in A and o- in V, p
s

is a probability density.
.

o-

over A, i.e_ _0.9

(a) for each s' in A, p (s') 0,
sjo-

(b)

s '

E ps a(s.) = 1,
EA '

(iv) q is a function on A X VI X V0 to [0,1] such that for each

s in A and o- in V, q is a probability density over V0,
0'

(v) s
0

is in A.

In the probabilistic generalization of the automaton for column
addition, the number of possible parameters that can be introduced Lz
uninterestingly large. Each transition M(k,(m,n)) may be replaaea

by a probabilistic transition 1 - Ekmn and
k m n2

and each output
, ,

.9 .1

Q(k(m,n)), 137-1C mrobabilities for a total of 2200 parameters.

A three-paramEr automaton model structurally rather close to the
regression model -easily defined. First, two parameters, E and

are introduced acs=ordfng to whether there is a 'carry' to the next
column.

and

P(M(k,(mln)) =0 Ik+m+n< 9) =1 -

P(M(k,(m,n)) =1~I k + m + n > 9) =1 -

In other words, if there is no 'carry', the probability of a correct
transition is 1 - e and if there is a 'carry' the probability of such
a transition is 1 - The third parameter, 7, is simply the prob-
ability of an output error. Conversely, the probability of a correct
output is:

P(Q(k,(m,n)) = (k + m + n) mod 10) = 1 - y

10



Consider now exercise i with Ci carrys and Di digits. If

we ignore the probability' of two error leading to a correct, response
(e.g., a transition error followed by an output error), then the prob-
ability of a -.?ct answer is just

D C4
(3) P(G to Exercise i) = (1-7)

i

(l - n) "(1-c)

As already indi;:ated, it is important to realize that this equation is
an approximation of the 'true' probability. However, to compute the
exact probability it is necessary to make a definite assumption about
how the probability 7 of an output error is distributed among the nine
possible wrong responses. A simple and intuitively appealing one-paramete
model is the one that arranges the 10 digits on a circle in natural order
with 9 next to 0, and then makes the probability of an error j steps to
the right or left of the correct response 3j . For example, if 5 is the
correct digit, then the probability of responding 4 is 5, of 3 is 52,

of 2 is 53, of 1 is 3, of 0 is 55, of 6 is 6, of 7 is 32, -etc.

Thus in terms of the original model

7 = 2( + 32 + 33 + 54) + -35 .

Consfzier now the exercise

+15

Then,whered..the digit response,

P(di - 2) = (1 - 7) ,

P(d2 = 6) = (a. - 7)(1 --n) +.n3

Here e additional term is n3 because if the state entered is 0
ratha-n than 1 when the pair (7,5) is input, the only way of obtaining
a co=2,ct answer is for 6 to be given as the sum of 0 + 4. + 1, which
has L.probability 3. Thus the probability of a correct response to
thia:±e-rcise is (1 - 7)[(1 - 7)(1 - n) + n3]. Hereafter we shall
ign-rr.--the n3 (or c3) terms.

may get a direct comparison with the linear regression model
if Twt=3 -take the logarithm of both sides of (3) to obtain:

(4) Log pi = Di log (1 - 7) + C. log (1 n) + (Di - C. - 1) log (1 c)

and eatimate log 1-'7, log 1- n, and log 1- c by regression with
the additive constant set equal to zero. We also may use some other

approach to estimation such as minimum x2 or maximum likelihood.
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The automaton model naturally suggests a more detailed analysis of
the data Unlike the regression model) the automaton provides an imme-
diate analysis of the digit-by-digit responses. Ignoring the eS-type
terms) we can in fact find the general maximum-likelihood estimates of
y, E) and T1 the response data are given in this more explicit
form.

Let Lucre be n digit responses in a block of exercises. For
1 < i < n let xi be the random variable that assumes the value 1 if

the ith response is correct and 0 otherwise. It is then easy to see
that

P(xi = 1)

{

(1 y) if i is a ones'-column digit,

(1 7)(1 E) if it is not a ones' column and there

is no carry to the ith digit,

(1 7)(1 - TO if there is a carry to the ith
digit,

;ranted that ES-type terms are ignored. Similar17 for the same three
Aternatives

P(x. = 0) =
1 (1 7)(1 -

- (1 - 7)(1 -

So for a string of actual digit responses xl,...,xn we can write the

likelihood function as:

( 5 ) y,(xi,...lxn) = (1- y)ayb(1- e)c(1-1)d[1- (1- 7)(1- E)]e1.1- (1- 7)(1- T)-Jr

where a = number of correct responses, b = number of incorrect responses
in the ones' column, c = nvirinr of correct reqyonses not in the ones'
column when the internal sty (-- is 0, d = number of correct responses
when the .'4nternal state is l,, e = number of incorrect responses not in

ones' :.olumn when the internal state is 0, and f = number of incor-
rect responses when the internal state.is 1. (In the model statistical
indepenaw=e of responses is assured by the correction procedure.) It
is more Imavenient to estimate 7° = 1 7, E° = 1 - E, and ri° = 1 - T1.

Making this change, taking the logarithm of both sides of (5) and
ferentiating with respect to each of the variables, we obtain three
equations that determine the maximum-likelihood estimates of 7', Ely
and 11:

aL a b eE'
0

7' 1 - 7' 1 7'E° 1 - 7'1'

12



aL c e7'
0

c. 1 7'c'

aL d f7'=
n' 1 - YTTIT

.

SO117.:±nz these equations, we obtain as estimates:

a - c - d
7' a+b-c-d'

c(a + b c - d)
-

(c + e) (a - c - d)

d(a + b c d)

(d 4 c d)

Asa h.77t_ --' data using these estimates 71:_ discussed in the next secti:

o-J.-parameter and five-parameter a-stomatan =leis. As a result 'f

.:cork with the data selecte 7to test = model:, we cohsidcd.
two el-mansdoms of the basic automaton gel. Thy --flfrst is a four-

that generalizes the 'car-- three-=.2-meter model to
for some contextual effects that-were oholerv,: in student re-
to addition problems with consecoTtive carry no-carry receiving

The second model generalizes' 'ztte four-baramer model further
t fifth parameter. This extension allows tsc:,- model to treat

',mins that consist of only one digit differently from normal.
crILmma Lhat -onsist of pairs of digits to be

Male four--.-,7n,rameter model is constructed by aplitLimg parameter
into two parameters ciTii.J.Led by co and This LE

do:._- distinguish addition columns when correctly solved, do
no- eive a carry from an immediately- preceding c__Dlum; although t.hat
pr= Ism- does receive a carry. Thu,. the model now refle.cts the pos-
r-. -11171T.Tece of the present state ( arry) upon e student's tendency.

rate unnecessary carrys,. The reasons for this modification are
tearer when we discuss the analysis of the data Parameters

a: . are retained as they were defined in the three-parameter model .
c is replaced by

co = p[cn+1 = 1 I en = 0 and xn + yn < 10]

1
= p[c

n+1
1 I cn = I and xn + yn < 10]

z_ i the carry (0 or 1) to column i of the problem.

tr-parameter model is also a two-state machine, but with one
t:-anLL73:ian probability now a function of the state value.
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The probability that any given addition problem will be solved
correctly may be written:.

(6) P(All Answer Digits Correct)

(1 - y)
D
(1 - n)C(1 - co)

D-C-E-1
(1

E

where D and C are the number of digits and carrys as defined earlier,
and E is the number of columns in the problem that do not receive a
carry, but which are preceded by a column that does.. We continue to-
assume that all errors occur independently and yet do not combine to
produce correct answers, This assumption applies to all the automaton
models we. discuss.

We shall not reproduce the details of
the four-parameter model. These are given
(1972, p. 144).

The five-parameter model is directly c
models by splitting the output-error probat
The generality of the four-parameter model
and ri are retained, but we add:

yo = the probability that an output er.
only one digit is printed in the column to
preceding column is the only source of outp
appear in the column;

the likelihood equation for
in Suppes and Morningstar

__dined from the preceding

Y into two components°
its parameters c_ c

u2 1.

occurs given that either
. ..dded, or a carry from the

end no printed digits

71 - the probability that an output e=-.
than one digit is printed in the column to :Te
digit and a carry from the preceding column

This modification allows the model to refleT-
dents find it easier to process an addition
need do to get the correct answer digit. is
pearing in.that column; this, as opposed to
perhaps a carry-before obtaining an answer

ccurs given that more
_ided, or that one printed

ire conjecture that stu-
_umn in which all they
opy the only digit; ap-
1ing two digits and

The probability that an answer to a af7,-7_ problem will be correct
may be written as:

(7) P(All Answer Digits Correct)

-
yo)D-s(1 71)s(1 oc(1

-
-E -1(1

-
ci)E

where D, C, and E are as defined earlier, and S is the number of
columns in the problem which involve the sl.=. 7.5f at. least two digits, or
one digit and a carry. Again, for details 7_f estimation problems in
this model, the reader is referred to Suppesiqnd Morningstar (1972,
PP. 147-148) ,



Register machines with perceptual instructions. To introduce
greater generality and to deepen the analysis to include specific ideas
about the perceptual processing of a column-addition exercise, wc moved
on to register machines for the reasons already described in Section I.

For column. addition three registers suffice ir analysis.
First there is the stimulus-supported register [SS1 that holds an encoded
representation of a printed symbol to which the student is perceptually
attending. In the present case the alphabet of such symbols consists of
the 10 digits and tl!, underline symbol 1_'. As a new symbol is attended
to, previously stored symbols are lost unless transferred to a non-
stimulus-supported -register. The second register is the non-stimulus-
supported register' r173S]. It provides long-term storage for computational
results. she thirt register is the c?erations register [OPJ that acts as

short-term store, 7toth for encoding:: of external stimuli and for results
af calculations carried out on thecottents of other registers. It is
also primarily noni-atimulus-support,ed-

As already stated in the main text, we drastically simplify the
perceptual situation by conceiving each exercise as being presented on
alzrid with at mast one symbol in each square of the grid. For column
anion w's number the coordinates of the grid from the upper right-
hatd corner. Thua in the exercise

15
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+ 37

the coordtnates of the digit 5 are (1,1), the coordinates of 4 are (2,1),
the coordinates of 7 .are (3,1), the coordinates of 1 are (1,2) and so
forth, with the --first coordinate being the row number and the second
being the column number,

The restricted set of instructions we need for column addition
are the following 10.

Attend (a,b): Direct attention to grid position (a,b).

(±a, ±b): Shift attention on the grid by ( ±a, ±b).

Readin [SS]: Read into the stimulus-supported register the
physical synit& in the grid position addressed
by Attend.

Lookup [R1] + [R2]:: Look up table of basic addition facts for adding
contents of register [R1] and [R2] and store
the result in fR1].

Copy [R1] in [Rai.: Copy the content of register [R1] in register
[R2],

Deleteright[R]: Delete the rightmost symbol of regtz:r, r [R] .

15



Jump L: Jump to line labeled L.

Jump (val) R,L: Jump to line label,,' T 1° .ntent of .,.,,

[R] is

Outright [R] : Write (output) the rightmost symbol of register
[R] at grid position addressed by Attend.

End: Terminate processing of current exercise.

Exit: Terminate subroutine processing and return to
.next line of main program.

Of the 10 instructions only Lookup does not have an elementary character.
In our complete analysis it has the status of a, subroutine built up from
more.primitive operations such as those of counting. It is, of course,
more than a problem of comstructing the table of basic addition facts
fr3m counting subrofutines; it is also a matter of being able to add a
single digit to any number stored in the nonrstimulua-supported register
[NSS] or (OP], as, for example, in adding many rows of digits in a given
column, I omit the details of building up this subroutine.

It should also be obvious that the remaining nine instructions are
not a minimal set; fpr example, the unconditional jump instruction is
easily eliminated,. -Tie do think the nine are both elementary and psy-
caologically intuitie for the subject matter at hand.

To illustrate in a simple way the use of subroutines, we may con-
sider two that are useful in writing the program for column addition.
The first is the vertical :scan subroutine, which is needed for the fol-
la4wing purpose. In adding rows of numbers with an uneven number of
digits, we cannot simply stop when we reach a blank grid square on the
left of the topmost row, We must also scan downward to see if there
are digits in that column in any other row. A second aspect of this
same problem is that in our model the student is perceptually proces-
aing only one grid square at a. time, so that he must have a check for
finding the bottom row by looking continually for an underline symbol.
Ctherwise he could, according to an apparently natural subroutine, pro-
ceed indefinitely far downward encountering only blanks and leaving
entirety the immediate perceptual region of the formatted exercise.
Here is the subroutine. In the main program it is preceded by an Attend
instrmction.

Vertical Scan Subroutine

77-scan (0-9._)

Rd r4it.adin

(0-92_) SS, Fin

Attend -1)

R-7-adin

16



Jump (_) SS. Fin

Attend (+0,+1)

Jum17 Rd

Fin Exit

The labels Rd and Fin of two of the lines are shown on the left.

The second subrOutine is one that outputs all the digits in a register
working from right to left. For example, in column addition, after the
leftmost column has been added, there may still be several digits re-
maining to print out to the left of this column in the 'answer' row.

Output [R]

Put Outright [R]

Deleteright [R]

Attend (0+1)

Jump (Blank) R, Fin

Jump Put

Fin Exit

Using these two subroutines the program for vertical addition is rela-
tively straightforward and requires 26 lines. I number the lines for
later reference; they are not a part of the program.

Vertical Addition

1. Attend (1,1)

2, Readi.n

3. Copy [SS] in [OP]

4. Attemd (+1,+0

5. Remlin

6. Opr Lookup [OP] + SS]

7. Rd Attend (+1,0

8. Reaff=r

9. Jump (0-9) SS, Opr

17



10. Jump (Blank) SS, Rd

11. Attend (+1,0)

12. Outright [OP]

13. Deleteright [OP]

14. Copy [OP] in [NSS]

15. Attend (1)+1)

16. V-scan

17. Jump (_) SS, Fin

38. Jump (0-9) SS, Car

19. Copy [SS] in [Op]

20., Jump Rd

21. Car Copy [NSS] in [OP]

22. Jump Opr

23. Fin Jump (Blank) NSS, Out

24. Attend (+1;0)

25. Output [NSS]

26. Out End

To show how the program works, we may consider a simple one - column
addition exercise. We show at the right of.each line content of
each register just before the next row is attended to ie.. after
all operations have been performed.

[SS] [op] [Dis]

4 4 LI-

5 5 9

3 3 12

8 8 20

20

0 0 2

Thiskind of analysis can be generalized to prove that the program is
correct, i.e., will output the correct answer to any column-addition
exercise, but this aspect of matters will not be pursued further here.

By attaching error parameters to various segments of the program,
performance models are easily generated. For comparative purposes we

18



may define a performance model essentially identical to the two-state
probabilistic automaton already introduced for column addition restricted
to two rows. To lines 6-12 we attach the output error parameter y,

and to lines 13-19 we attach the 'carry' error paraMeter if there
is a carry, and the error parameter e if there is not. Given this
characterization of the error parameters the two performance models are
behaviorally identical. On the other hand, it is clear that the program
for the three-register machine is much more general than the two-state
probabilistic automaton, since it is able to solve any vertical addi-
tion exercise. It is also obvious that other performance models can
easily be defined for vertical addition by introducing error parameters
attached to different segments of the program.

Students. To test .the models outlined above, as already indicated,
we used students participating in the elementary-mathematics CAI programs
of the Institute. This project supported 10 terminals located in
Brentwood School in East Palo Alto. More than 80 percent of the stu-
dents attending Brentwood School are minority students. Much of the
data reported in publications listed below are drawn from Brentwood
School. In addition, the models described above were also applied
toward the end of the grant period to data drawn from handicapped
children participating in the CAI network organized by the Institute
to include a number of schools for deaf students.

III.. RESULTS

We summarize in this section the main, results. We emphasize,
however, that the reader who is interested in the detailed testing
of the models is urged to go to the publications summarized at the end
of this section in which results are reported. For simplicity, we do
not consider the testing of the register machine models but concentrate
here on the linear regression models and the probabilistic automaton
models.

Linear regression models. Using the linear regression model
described in Section II, the following regression was obtained for
the mean response data of 63 third graders taking the pretest shown in
Table 1. Complete experimental details about the students, etc., are
Even in Suppes and Morningstar (1972, Ch. 3).

p. = .53 SUMR. .93 CAR. .31 VF.- 4.o6 .

The multiple R was .74 and R2 was ..54, which reflects a reasonable fit
to the data. Extensive data analysis of a similar kind for other basic
skills, using similar regression models, is reported in Suppes and
Morningstar (1972).

Test of automaton models for addition. Tests of the three-, four-
mnd five-parameter addition models for third-grade addition, including



TABLE 1

Pretest Exercises in Column Addition

1) 17
+ 2

11
22

+ 14

15) 5267
+ 283

2) 6 16) 46

6 9) 27 75
+4 + 23

3) 14

+

lo) 8

+ 32
17) 3986

+ 4735

4) 6 11) 639 18) 27

t_12 + 212 46

+ 88

5) 363
214

12) 66
+ 14 19) 7657

+ 1875

6) 416 13) 378
+ 212 + 125 2o) 69

36
+ 48

7) 12 14) 557
31 + 256

+ 10
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the exercises displayed in Table 1, as well as similar fourth-grade
exercises, are shown in Table 2. Both sets of exercises were given
both as pretests and posttests, and the corresponding parameter esti-
mates are shown in the table:

The fit of the predictions to observed proportion correct is shown
in Figure 1.

These data, reported in a 70-page chapter of Suppes and Morningstar
(1972), were analyzed in conjunction with Mr. Alex Cannara. Interested
readers are referred to Chapter 4 of that book.

Publications. Research performed under this grant has been pub-
lished in the following articles.

P. Suppes and M. Morningstar. Four programs in computer-assisted
instruction. In W. H. Holtzman (Ed.), Computer-assisted instruction,
teE.ting, and guidance. New YorX: Harper & Row, 1970. Pp. 233-2b5.

P. Suppes and M. Morningstar. Technolcgical innovations: Computer-
assisted instruction and compensatory education. In F. Korten,
S. Cook & J. Lacey (-Eds.); Psychology and the problems of society.
Washtngton, D. C.: American Psychological Association, Inc., 1970;
Pp, 221-236.

F Suppes, Computer-assisted instruction at Stanford. In Man and
computer. Proceedings of international conference; Bordeaux 1970.

Karger, 1972. Pp. 298-330.

P. Suppes and M. Morningstar. Computer-assisted instruction at Stanford.
1966-68: Data, models, and evaluation of the arithmetic pLograms.
New York: Academic Press, 1972, 533 pp.

P. Suppes. Facts and. fantasies of education. In M. C. Wittrock (Ed,),
Changing schools: Alternatives from educational research. Englewood
Cliffs, N. j.: Prentice-Hall; 1973. (The technical appendix of this
article reports research conducted under this grant.)

Publications in preparation. The principal investigator, Patrick
Suppes, together with his collaborators in the Institute, are in the
process of preparing a book that will be a sequel to the Suppes and
Morningstar (1972) book, and that will report a number of detailed anal-.
yses of the models described in this report. There will be an especially
long chapter on the register machine models written by Suppes and Lindsay
Flannery, a graduate student in the InStitute. Part of the results on
register machine models of Suppes and Flannery will also be written for
publication in article form, probably in the Journal of Mathematical
Psychology.
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Fig. 1. Proportion correct per problem for data and models.
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IV, CONCLUSIONS

Several conclusions emerge from this research over a period of
several years on mathematical models of elementary-mathematics learning
and performance. We brea-,: these conclusions into four broad classe2,

1, Empirical Adequacy

The work indicated in this report, but reported more extensively
in Suppes and Morningstar (1972), and in other publications that have
not yet appeared, demonstrates that the kind of process models using
ideas from the theory of automata and the abstract theory of register
machines have direct application to the empirical study of students'
performance in elementary arithmetic skills. It is fair to say that
the models developed as the main focus of this project are probably
the most detailed process models that yet exist in the psychological
or educational literature, insofar as the basic skills of elementary
mathematics are concerned. From the work performed it is fair to con-
clude that automaton models of the basic operations of addition, sub-
traction, multiplication and division can provide a detailed account
of student performance, including especially the analysis of the
typical errors that students make,

2. Open Questions

At the same time, the research begun under this project leaves more
questions open than solved. The automaton models, which were most
thoroughly tested empirically, do not provide anything like a satis-
factory account of the perceptual processing engaged in by students,
nor do they take adequate account of the actual real-time operations,
The models are defined in terms of discrete time rather than continuous
time, and no perceptual apparatus is assumed. Extensions in both of
these directions are needed in order to develop more adequate models,
The first steps of incorporating some simple perceptual processing were
developed as part of the register machine models described in Section II,
but these models represent only a very elementary and simple form of per-
ceptual processing. The actual perceptual processing engaged in by stu-
dents is obviously more elaborate and more complex in nature.

3, Need for LearninE Models

Although it was the original intention of the project to develop a
wide range of learning models as well as performance models, the details
of the performance models developed and tested in this project were suf-
ficiently complex -11(1 +)- -obler ' :!ollecting adequate bodies of data
were sufficiently _:ff that, u next steps to correspondingly de-
tailed learning L2odc. ,lot taken. Some work on learning was described
in Suppes (1975), and further work on learning will be reported in some
of the unpublished work yet to appear, but it is fair,to sax, that the
models as described above concentrate almost entirely on performance.
The beginning of a complex theory of learning for finite automata in
Suppes (1969) and in Rottmayer (1970) form a promising beginning but
further work is needed for extension.
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fool Applications

ite of the shortcomings of the models developed as descri"ced
a automaton and register machine models developed already have
pc- pplications in the organization of individualized curriculum
in y mathematics, especially in a computer-assisted fir :` 1._:tion

se 1::. .,rhaps the central criticism that can be made of most 1 ::

-isted instruction at the present time is the relati7e sim-
the model of the student assumed. The kind of models develoi2ed

her Pugh still far too simple, do take a definite step toward pos-
tul 7.-pre than a simple error rate and a simple latency of response
in ..cent, and do attempt to impose an internal structure on his
pr 1_7 of curriculum materials. As more deeply individualized cur-
ric attempted, the kind of models developed as'basic research
uncle project should play a natural part in providing tools f7,1 the
deve t of such highly individualized curriculum.

otential of the approach is that presenting exercises to the
stude an individualized basis will no longer be based simply on
the fates and latency rates of the student, but on the estimate
of parameters of a model of his internal processing capacity.
Err.7LL.i_ now be translated into error parameters that have a meaning-
ful fL17: ;retation in a process model of th.:- basic skills the student
is 1A%: !Ig. Applications of such detailed models would seem difficult
in ca e.' -.lam settings, but it is considerably more practical when placed
i7 a1. Ating, and there is reason to hope that such models will be
der taring the coming decade.
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